Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Adicionar filtros

Base de dados
Tipo de documento
Intervalo de ano
1.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.10.21.512606

RESUMO

Type-I interferons (IFN-I) are critical mediators of innate control of viral infections, but also drive recruitment of inflammatory cells to sites of infection, a key feature of severe COVID-19. Here, and for the first time, IFN-I signaling was modulated in rhesus macaques (RMs) prior to and during acute SARS-CoV-2 infection using a mutated IFN2 (IFN-modulator; IFNmod), which has previously been shown to reduce the binding and signaling of endogenous IFN-I. In SARS-CoV-2-infected RMs, IFNmod reduced both antiviral and inflammatory ISGs. Notably, IFNmod treatment resulted in a potent reduction in (i) SARS-CoV-2 viral load in Bronchoalveolar lavage (BAL), upper airways, lung, and hilar lymph nodes; (ii) inflammatory cytokines, chemokines, and CD163+MRC1- inflammatory macrophages in BAL; and (iii) expression of Siglec-1, which enhances SARS-CoV-2 infection and predicts disease severity, on circulating monocytes. In the lung, IFNmod also reduced pathogenesis and attenuated pathways of inflammasome activation and stress response during acute SARS-CoV-2 infection. This study, using an intervention targeting both IFN- and IFN-{beta} pathways, shows that excessive inflammation driven by type 1 IFN critically contributes to SARS-CoV-2 pathogenesis in RMs, and demonstrates the potential of IFNmod to limit viral replication, SARS-CoV-2 induced inflammation, and COVID-19 severity.


Assuntos
COVID-19 , Inflamação , Síndrome Respiratória Aguda Grave
2.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.105437

RESUMO

Predicting a multicellular organism's phenotype quantitatively from its genotype is challenging, as genetic effects must propagate across scales. Circadian clocks are intracellular regulators that control temporal gene expression patterns and hence metabolism, physiology and behaviour. Here we explain and predict canonical phenotypes of circadian timing in a multicellular, model organism. We used diverse metabolic and physiological data to combine and extend mathematical models of rhythmic gene expression, photoperiod-dependent flowering, elongation growth and starch metabolism within a Framework Model for the vegetative growth of Arabidopsis thaliana, sharing the model and data files in a structured, public resource. The calibrated model predicted the effect of altered circadian timing upon each particular phenotype in clock-mutant plants under standard laboratory conditions. Altered night-time metabolism of stored starch accounted for most of the decrease in whole-plant biomass, as previously proposed. Mobilisation of a secondary store of malate and fumarate was also mis-regulated, accounting for any remaining biomass defect. We test three candidate mechanisms for the accumulation of these organic acids. Our results link genotype through specific processes to higher-level phenotypes, formalising our understanding of a subtle, pleiotropic syndrome at the whole-organism level, and validating the systems approach to understand complex traits starting from intracellular circuits. This work updates the first biorXiv version, February 2017, https://doi.org/10.1101/105437, with an expanded description and additional analysis of the same core data sets and the same FMv2 model, summary tables and supporting, follow-on data from three further studies with further collaborators. This biorXiv revision constitutes the second version of this report.


Assuntos
Transtornos do Crescimento
3.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.10.05.463212

RESUMO

The COVID-19 pandemic remains a global health crisis, yet, the immunopathological mechanisms driving the development of severe disease remain poorly defined. Here, we utilize a rhesus macaque (RM) model of SARS-CoV-2 infection to delineate perturbations in the innate immune system during acute infection using an integrated systems analysis. We found that SARS-CoV-2 initiated a rapid infiltration (two days post infection) of plasmacytoid dendritic cells into the lower airway, commensurate with IFNA production, natural killer cell activation, and induction of interferon-stimulated genes. At this early interval, we also observed a significant increase of blood CD14-CD16+ monocytes. To dissect the contribution of lung myeloid subsets to airway inflammation, we generated a novel compendium of RM-specific lung macrophage gene expression using a combination of sc-RNA-Seq data and bulk RNA-Seq of purified populations under steady state conditions. Using these tools, we generated a longitudinal sc-RNA-seq dataset of airway cells in SARS-CoV-2-infected RMs. We identified that SARS-CoV-2 infection elicited a rapid recruitment of two subsets of macrophages into the airway: a C206+MRC1- population resembling murine interstitial macrophages, and a TREM2+ population consistent with CCR2+ infiltrating monocytes, into the alveolar space. These subsets were the predominant source of inflammatory cytokines, accounting for ~75% of IL6 and TNF production, and >90% of IL10 production, whereas the contribution of CD206+MRC+ alveolar macrophages was significantly lower. Treatment of SARS-CoV-2 infected RMs with baricitinib (Olumiant(R)), a novel JAK1/2 inhibitor that recently received Emergency Use Authorization for the treatment of hospitalized COVID-19 patients, was remarkably effective in eliminating the influx of infiltrating, non-alveolar macrophages in the alveolar space, with a concomitant reduction of inflammatory cytokines. This study has delineated the major subsets of lung macrophages driving inflammatory and anti-inflammatory cytokine production within the alveolar space during SARS-CoV-2 infection.


Assuntos
Doença Aguda , Adenocarcinoma Bronquioloalveolar , Síndrome Respiratória Aguda Grave , COVID-19 , Inflamação
4.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.09.16.300277

RESUMO

Effective therapeutics aimed at mitigating COVID-19 symptoms are urgently needed. SARS-CoV- 2 induced hypercytokinemia and systemic inflammation are associated with disease severity. Baricitinib, a clinically approved JAK1/2 inhibitor with potent anti-inflammatory properties is currently being investigated in COVID-19 human clinical trials. Recent reports suggest that baricitinib may also have antiviral activity in limiting viral endocytosis. Here, we investigated the immunologic and virologic efficacy of baricitinib in a rhesus macaque model of SARS-CoV-2 infection. Viral shedding measured from nasal and throat swabs, bronchoalveolar lavages and tissues was not reduced with baricitinib. Type I IFN antiviral responses and SARS-CoV-2 specific T cell responses remained similar between the two groups. Importantly, however, animals treated with baricitinib showed reduced immune activation, decreased infiltration of neutrophils into the lung, reduced NETosis activity, and more limited lung pathology. Moreover, baricitinib treated animals had a rapid and remarkably potent suppression of alveolar macrophage derived production of cytokines and chemokines responsible for inflammation and neutrophil recruitment. These data support a beneficial role for, and elucidate the immunological mechanisms underlying, the use of baricitinib as a frontline treatment for severe inflammation induced by SARS-CoV-2 infection.


Assuntos
COVID-19 , Inflamação , Adenocarcinoma Bronquioloalveolar
5.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.05.19.105437

RESUMO

The newly emerged human coronavirus, SARS-CoV-2, has caused a pandemic of respiratory illness. The innate immune response is critical for protection against Coronaviruses. However, little is known about the interplay between the innate immune system and SARS-CoV-2. Here, we modeled SARS-CoV-2 infection using primary human airway epithelial (pHAE) cultures, which are maintained in an air-liquid interface. We found that SARS-CoV-2 infects and replicates in pHAE cultures and is directionally released on the apical, but not basolateral surface. Transcriptional profiling studies found that infected pHAE cultures had a molecular signature dominated by pro-inflammatory cytokines and chemokine induction, including IL-6, TNF, CXCL8. We also identified NF-{kappa}B and ATF4 transcription factors as key drivers of this pro-inflammatory cytokine response. Surprisingly, we observed a complete lack of a type I or III IFN induction during SARS-CoV-2 infection. Pre-treatment or post-treatment with type I and III IFNs dramatically reduced virus replication in pHAE cultures and this corresponded with an upregulation of antiviral effector genes. Our findings demonstrate that SARS-CoV-2 induces a strong pro-inflammatory cytokine response yet blocks the production of type I and III IFNs. Further, SARS-CoV-2 is sensitive to the effects of type I and III IFNs, demonstrating their potential utility as therapeutic options to treat COVID-19 patients. IMPORTANCEThe current pandemic of respiratory illness, COVID-19, is caused by a recently emerged coronavirus named SARS-CoV-2. This virus infects airway and lung cells causing fever, dry cough, and shortness of breath. Severe cases of COVID-19 can result in lung damage, low blood oxygen levels, and even death. As there are currently no vaccines or antivirals approved for use in humans, studies of the mechanisms of SARS-CoV-2 infection are urgently needed. SARS-CoV-2 infection of primary human airway epithelial cultures induces a strong pro-inflammatory cytokine response yet blocks the production of type I and III IFNs. Further, SARS-CoV-2 is sensitive to the effects of type I and III IFNs, demonstrating their potential utility as therapeutic options to treat COVID-19 patients.


Assuntos
Síndrome Respiratória Aguda Grave , COVID-19 , Insuficiência Respiratória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA